
 PROGRAMMING IN JAVA

1.Introduction to Java

Java Architecture : –

1.​ Java Development Kit (JDK)
○​ Compiler (javac): Converts Java source code into bytecode.
○​ Debugger (jdb): Helps in debugging Java programs.
○​ JavaDoc: Generates documentation from Java source code.
○​ Other Tools: Additional tools for developing, debugging, and monitoring

Java applications.

2.​ Java Runtime Environment (JRE)
○​ Libraries: JRE includes essential libraries and APIs required to run Java

applications.
○​ JVM: JRE contains the JVM and other components necessary to run Java

programs.
○​

 3.Java Virtual Machine (JVM)

○​ Bytecode Execution: Java programs are compiled into bytecode, which
the JVM interprets and executes. This allows Java programs to be
platform-independent.

○​ Garbage Collection: JVM automatically manages memory allocation and
deallocation, cleaning up unused objects to free memory.

○​ Security: JVM enforces a strict security model, isolating Java programs
from the underlying system and each other.

Java Features : –

1.​ Platform Independence
○​ Java programs are compiled into bytecode, which can run on any platform

with a compatible JVM.
2.​ Object-Oriented

○​ Java follows the principles of object-oriented programming (OOP) such as
inheritance, encapsulation, polymorphism, and abstraction.

3.​ Simple
○​ Java has a simpler syntax compared to languages like C++, making it

easier to learn and use.
4.​ Secure

○​ Java provides a secure execution environment with features like bytecode
verification, sandboxing, and an extensive set of APIs for security
management.

5.​ Robust
○​ Java has strong memory management, exception handling, and

type-checking mechanisms.
6.​ Multithreaded

○​ Java supports multithreading, allowing concurrent execution of two or
more threads.

7.​ Distributed
○​ Java has a rich set of APIs for networking, making it suitable for

distributed computing.
8.​ High Performance

○​ Java's performance is enhanced by Just-In-Time (JIT) compilers and
efficient garbage collection.

Syntax Differences between C++ and Java : –

1.​ Basic Structure
●​ C++: Uses header files and the main() function.
●​ Java: Uses packages and the public static void main(String[] args)

method.

2.Memory Management

●​ C++: Manual memory management using new, delete, malloc, and free.
●​ Java: Automatic garbage collection.

3.Inheritance

●​ C++: Supports multiple inheritance.
●​ Java: Supports single inheritance, with multiple inheritance achieved through interfaces.

4.Exception Handling

●​ C++: Uses try, catch, and throw, but exception handling is less emphasized.
●​ Java: Exception handling is a core feature with a robust hierarchy of exception classes.

5.Pointers

●​ C++: Extensive use of pointers.
●​ Java: No direct use of pointers; references are used instead.

6.Templates and Generics

●​ C++: Uses templates for generic programming.
●​ Java: Uses generics for type-safe collections and other generic programming features.

Semantic Differences between Java and C++ : -

Understanding the semantic differences between Java and C++ helps in grasping how the same
constructs behave differently in these languages.

1.​ Memory Management
○​ C++: Memory management is manual. Developers use new and delete for

dynamic memory allocation and deallocation. This can lead to memory leaks if
not handled correctly.

○​ Java: Memory management is automatic through garbage collection, which
periodically removes unused objects, reducing the risk of memory leaks.

2.​ Inheritance
○​ C++: Supports multiple inheritance, allowing a class to inherit from more than one

base class. This can lead to complexity and issues like the diamond problem.
○​ Java: Does not support multiple inheritance of classes. Instead, it uses interfaces

to achieve similar functionality, simplifying the inheritance structure and avoiding
problems like the diamond problem.

3.​ Exception Handling
○​ C++: Exception handling is available but is less emphasized and often not used

consistently across different codebases.
○​ Java: Exception handling is a core feature, with a well-defined hierarchy of

exception classes and enforced use of try-catch blocks for error handling.
4.​ Object Orientation

○​ C++: Is a multi-paradigm language that supports both procedural and
object-oriented programming. This allows flexibility but can lead to mixed
programming styles.

○​ Java: Is purely object-oriented, meaning almost everything is an object. This
enforces a consistent object-oriented approach throughout the code.

5.​ Runtime Environment
○​ C++: Programs are compiled directly into machine code, making them

platform-dependent. The behaviour of the program is directly tied to the
underlying hardware and operating system.

○​ Java: Programs are compiled into bytecode, which is interpreted by the JVM.
This makes Java programs platform-independent, as the JVM abstracts the
underlying hardware and operating system.

6.​ Type System
○​ C++: Offers more control over types, including the ability to use low-level

constructs like pointers and perform explicit type casting.
○​ Java: Enforces strict type checking and does not allow explicit pointer

manipulation, enhancing security and reducing bugs related to type errors.

Semantics in simple terms is MEANINGFUL Sentence,which is formed by using
correctly well structured syntax.

For Example :
In normal English, if you say: “ She is a boy “ . Now this sentence is syntactically
correct , but does not give any proper meaning. It’s ambiguous.

Similarly, in programming language if you write string name= 5 ; x =”a” +1; int
num=”arjun”
These are semantically wrong. Since it makes no sense .

Compiling and Executing a Java Program : –
Convert Java source code (.java) to bytecode (.class) and Run the bytecode using the
JVM.

1. Writing a Java Program

Java programs are written in .java files. Here’s an example of a simple Java
program:

2. Compiling the Java Program

Before running a Java program, you must compile it to convert the source
code into bytecode.

●​ Command Line: Open the terminal or command prompt, navigate to
the directory where your .java file is located, and run:

●​ Output: This command will generate a HelloWorld.class file
containing the bytecode.

3. Executing the Java Program

After compiling, you can execute the program:

●​ Command Line: Run the following command:

●​ Output: This will execute the bytecode on the JVM, and you should
see the output:

Variables : –

Variables are containers for storing data values. In Java, each variable has a type
that determines what kind of data it can hold.

Types of Variables:

●​ Local Variables: Declared inside a method or block and accessible only within
it.

●​ Instance Variables: Declared inside a class but outside any method, and
they belong to an instance of the class.

●​ Static Variables: Declared with the static keyword and belong to the
class rather than any instance.

Constants : –

Constants are variables whose values cannot be changed once assigned. They are
declared using the final keyword.

Keywords: –

Keywords are reserved words in Java that have a predefined meaning and cannot be
used as identifiers (variable names, function names, etc.).

Examples of Keywords:

Control flow: if, else, switch, case, for, while, do, break, continue
Access modifiers: public, private, protected
Class-related: class, interface, extends, implements, abstract
Data types: int, float, char, double, boolean, void
Others: static, final, try, catch, finally, throw, throws, return, this, new

Data Types : –

Data types specify the type of data a variable can hold. Java has two main categories of
data types:

1.Primitive Data Types
2.Reference Data Types.

1. Primitive Data Types : –

Java has eight primitive data types, which are the most basic data types.

Integer Types:

●​ byte: 1 byte, range: -128 to 127
●​ short: 2 bytes, range: -32,768 to 32,767
●​ int: 4 bytes, range: -2^31 to 2^31-1
●​ long: 8 bytes, range: -2^63 to 2^63-1

Floating-Point Types:

●​ float: 4 bytes, single-precision floating point
●​ double: 8 bytes, double-precision floating point

Character Type:

●​ char: 2 bytes, stores a single character/letter or ASCII values

Boolean Type:

●​ boolean: 1 bit, stores true or false

2. Reference Data Types

Reference data types refer to objects and arrays.

●​ Examples:
○​ Strings: String name = "John";
○​ Arrays: int[] numbers = {1, 2, 3};
○​ Classes: MyClass obj = new MyClass();
○​

Example of Using Variables and Data Types

Operators (Arithmetic, Logical and Bitwise) and Expressions : –

1.Arithmetic Operator
2.Relational Operator
3.Logical Operator
4.Bitwise Operator
5.Assignment Operator
6.Unary Operator

1) Arithmetic Operators

Used for basic mathematical operations.

(2) Logical Operators

Used to combine boolean expressions

Used with boolean expressions.

(3) Bitwise Operators

Operate at the binary level. Work on bits (0 and 1).

(4) Unary Operators

Operate on one operand.

(5) Assignment Operators

Assign values and perform operations in one step.

(6)Relational (Comparison) Operators

Compare two values.

Comments in Java : –

1.​ Used to make code readable.
2.​ For Not Running specific line or multi lines we use comments

Single-line comment: // This is a comment​

Multi-line comment:

Basic Java Program Structure : –

Decision Making Constructs: –
(1) if Statement

(2) if-else Statement

(3) if-else-if Ladder

Loops and Nesting: –

1.for loop

2.while loop

3.do-while loop

4.Nested Loops

 Java Methods: –

●​ A method is a block of code which only runs when it is called.
●​ You can pass data, known as parameters, into a method.
●​ Methods are used to perform certain actions, and they are also known as

functions.
●​ Why use methods? To reuse code: define the code once, and use it many times.

(a) Defining a Method

A method must be declared within a class. It is defined with the name of the method,
followed by parentheses (). Java provides some pre-defined methods, such as
System.out.println(), but you can also create your own methods to perform certain actions:

●​ myMethod() is the name of the method
●​ static means that the method belongs to the Main class and not an object of the

Main class.
●​ void means that this method does not have a return value.

(b) Calling a Method

To call a method in Java, write the method's name followed by two parentheses () and a
semicolon;

In the following example, myMethod() is used to print a text (the action), when it is called:

Example

Inside main, call the myMethod() method:

A method can also be called multiple times

Java Scope: –
In Java, variables are only accessible inside the region they are created. This is
called scope.

Scope determines the visibility or accessibility of a variable.

🔹 1. Local Variables

➤ Definition:

A local variable is declared inside a method, constructor, or block and is accessible only
within that block.

➤ Key Points:

●​ Declared inside methods or loops.
●​ Cannot be accessed outside the method/block.
●​ No default value – must be initialized before use.

🔹 2. Instance Variables

➤ Definition:

An instance variable is declared inside a class but outside any method. It belongs to the
object of the class.

➤ Key Points:

●​ Created when an object is created.
●​ Has a default value (e.g., 0 for int, null for objects).
●​ Each object gets its own copy of the variable.

🔹 3. Static Variables

➤ Definition:

A static variable is declared with the static keyword. It belongs to the class rather than any
object.

➤ Key Points:

●​ Shared among all objects of the class.
●​ Only one copy exists in memory.
●​ Can be accessed using class name or object.

✅ Summary:

●​ Use local variables for temporary values within methods.​

●​ Use instance variables when each object should have its own data.​

●​ Use static variables for values shared by all instances (like counters).

 Passing and Returning Arguments: –

🔹 Parameters in Java

●​ Parameters are variables listed inside the parentheses in a method definition.
●​ They are used to receive values when the method is called.

🔹 Arguments in Java

●​ Arguments are the actual values passed to the method when it is called.

Java uses Pass by Value for both primitive and reference types.

🔸 1. Passing Arguments to Methods

Java passes a copy of the variable's value. Changes inside the method do not affect the
original value.

🔸 2. Returning Values from Methods

 Type Conversion in Java: –

Type conversion refers to changing data from one type to another.

✅ Two Types of Type Conversion:

🔹 A. Implicit Type Conversion (Widening Conversion)

●​ Happens automatically by Java.
●​ Converts smaller type to larger type.
●​ No data loss.

🔹 B. Explicit Type Conversion (Narrowing Conversion / Type Casting)

●​ Performed manually by the programmer.
●​ Converts larger type to smaller type.
●​ May cause data loss or overflow.

Type checking ensures type safety — that variables and expressions are used with compatible
types.

🔹 A. Compile-time Type Checking

Java is a statically-typed language — it checks data types at compile time.

🔹 B. Runtime Type Checking using instanceof operator

Used to check the actual type of an object at runtime before casting it.

Example

Built in Java Class Method

Predefined methods available in Java API classes (like Math, String, Integer, etc.).​

Help you write efficient and cleaner code without reinventing logic.

1. Math Class (java.lang.Math)

🔸 2. String Class (java.lang.String)

Provides methods to manipulate text (strings).

🔸 3. Wrapper Classes (Integer, Double, etc.)

Used to wrap primitive types into objects and provide utility methods.

🔸 4. Character Class

Provides utility methods for working with characters.

🔸 5. System Class

Used for basic system-related functions.

 2.Arrays, Strings and I/O

1. Creating & Using Arrays

An array is a data structure that stores multiple values of the same type in a single variable,
instead of declaring separate variables for each value.

🔹 1.1 One-Dimensional Arrays

➤ Declaration of an Array

➤ Instantiation (Memory Allocation)

➤ Declaration + Instantiation

➤ Initialization

➤ Combined Declaration, Instantiation & Initialization

➤ Accessing Array Elements

🔹 1.2 Multi-Dimensional Arrays

A multi-dimensional array is essentially an array of arrays.

➤ Declaration and Instantiation

➤ Initialization

➤ Combined Declaration & Initialization

🔹 1.3 Key Points

●​ Arrays are zero-indexed: the first element is at index 0.​

●​ The length of the array is fixed once declared.​

●​ Use .length to find the size of the array.​

●​ Arrays can store primitive types (like int, char, etc.) and objects (like String,
Student, etc.).

2. Referencing Arrays Dynamically

Arrays in Java are objects created at runtime.

Example :

Size can be determined based on user input or logic in the program.

3. Java Strings

a) The Java String Class

Part of java.lang package.
Strings are immutable sequences of characters.

b) Creating & Using String Objects

Using String Literals:

Using the new keyword:

c) Manipulating Strings

Common methods:

●​ length(), charAt(index), substring()​

●​ toUpperCase(), toLowerCase(), trim()​

●​ indexOf(), lastIndexOf(), replace()

d) String Immutability & Equality

🔸 String Immutability in Java

✅ What is Immutability?

 A String is immutable in Java, which means:

Once a String object is created, its value cannot be changed.

✅ Why are Strings immutable?

1.​ Security – Strings are used in sensitive operations (e.g., file paths, network
connections).​

2.​ Thread-safety – Immutable objects are inherently thread-safe.​

3.​ Caching – Java optimizes memory by reusing String objects in the String pool.​

✅ Example of String Immutability:

Explanation:

●​ s1.concat(" World") creates a new String object, but does not modify the
original s1.​

●​ To store the changed value, you must assign it:

🔸 String Equality in Java

✅ 1. == Operator (Reference Comparison)

●​ Checks if two string references point to the same object in memory.​

✅ 2. .equals() Method (Content Comparison)

●​ Compares actual content/values of the strings.

Explanation:

●​ "Java" literals a and b refer to the same object in the string pool.​

●​ new String("Java") creates a new object in the heap memory.​

●​ So:​

○​ == checks reference, and​

○​ .equals() checks value.

4 Passing Strings To & From Methods

✅ Key Concept:

●​ In Java, strings are objects, but they are passed to methods just like primitive types —
using pass-by-value.​

●​ Since String is immutable, changes made to the string inside a method do not affect the
original string outside the method.

✅ 1. Passing String to a Method

✅ 2. Returning a String from a Method

StringBuffer Class

Unlike String, StringBuffer is mutable.

Common methods:

●​ append(), insert(), replace(), delete(), reverse()

4.Simple I/O Using System.out and Scanner Class

5.Byte and Character Streams
Java I/O is based on streams (sequences of data).​

Byte Streams: Handle binary data.​

●​ Classes: InputStream, OutputStream​

●​ Example:

Character Streams: Handle character data.

●​ Classes: Reader, Writer​

●​ Example:

6.Reading/Writing from Console and Files

Console Input/Output

●​ Use Scanner for reading and System.out for writing.​

●​ Example:

File Input/Output

●​ Reading from file:

Writing to file:

3. Inheritance, Interfaces, Packages,
Enumerations, Autoboxing and Metadata

1.​ Inheritance: A mechanism where one class acquires properties (fields) and behaviors
(methods) of another class. Types: Single level, Multilevel. Concepts: Method Overriding,
Dynamic Method Dispatch, Abstract Classes.​

2.​ Interfaces: A contract in Java where a class agrees to implement the abstract methods
declared in the interface.​

3.​ Packages: Grouping related classes and interfaces into a single unit. Packages help
avoid naming conflicts and manage access protection.​

4.​ Extending Interfaces and Packages: Mechanism to create new interfaces or packages
by building on existing ones.​

5.​ Package and Class Visibility: Controls which classes or members can be accessed
from other classes or packages (public, private, protected, default).​

6.​ Standard Java Packages (util, lang, io, net): Java’s built-in packages that provide
commonly used classes.​

7.​ Wrapper Classes: Convert primitive data types into objects (e.g., int to Integer).​

8.​ Autoboxing/Unboxing: Automatic conversion between primitive types and their
corresponding wrapper classes.​

9.​ Enumerations (Enums): Special classes used to define collections of constants.​

10.​Metadata (Annotations): Provide data about the program that is not part of the program
itself. Used for compiler instructions, runtime processing, etc.

🔷 2. Interfaces

Definition:

An interface is a blueprint of a class. It contains abstract methods only (Java 8+ allows
default/static methods too). A class implements an interface and defines its methods.

There is no concept of multiple-inheritance in Java, but, Interfaces in Java are, for the most part,
unique to the language, play a role similar to that of multiple-inheritance. Another unique feature
in Java is Packages. Packages are containers for classes that are used to keep the class name
space compartmentalized.

​

 Exception Handling, Threading, Networking and Database
Connectivity

1. Exception Handling

Java handles runtime errors using exceptions. This helps in writing robust and error-free
programs.

●​ Exception Types: Two main categories — Checked exceptions (must be handled at
compile time) and Unchecked exceptions (occur at runtime).​

●​ Uncaught Exceptions: Exceptions not caught using try-catch blocks lead to
program termination.​

●​ throw: Used to explicitly throw an exception object.​

●​ Built-in Exceptions: Java provides many predefined exceptions like
NullPointerException, ArithmeticException,
ArrayIndexOutOfBoundsException, etc.​

●​ Creating Your Own Exceptions: You can create custom exception classes by
extending the Exception class.

❖ What is an Exception?

An exception is an event that disrupts the normal flow of the program. It is an object that
represents an error.

❖ Exception Types:

●​ Checked Exceptions: Must be handled during compilation (e.g., IOException,
SQLException).​

●​ Unchecked Exceptions: Occur during runtime (e.g., ArithmeticException,
NullPointerException).​

❖ Uncaught Exception:

If not handled using try-catch, the program will terminate abnormally.

❖ throw Keyword:

Used to manually throw an exception

❖ Built-in Exceptions:

Some common ones:

●​ ArithmeticException
●​ ArrayIndexOutOfBoundsException
●​ NullPointerException
●​ ClassNotFoundException

❖ Creating Your Own Exception:

You can create a custom exception by extending the Exception class.

2. Multi-threading

Multithreading allows concurrent execution of two or more parts of a program for maximum CPU
utilization.

●​ Thread Class and Runnable Interface: Two ways to create threads — extend the
Thread class or implement the Runnable interface.​

●​ Creating Single and Multiple Threads: Multiple threads can run simultaneously,
performing different tasks.You can create multiple threads and run them in parallel.​

●​ Thread Prioritization: Threads can be assigned priorities to control execution order
using constants like Thread.MIN_PRIORITY, NORM_PRIORITY, and MAX_PRIORITY.​

●​ Synchronization and Communication: Prevents thread interference and ensures
consistent data. Inter-thread communication uses methods like wait(), notify(), and
notifyAll().​

●​ Suspending/Resuming Threads: Temporarily pause or resume threads (though
suspend() and resume() are deprecated, alternatives using flags are used).

❖ What is Multi-threading?

It is the ability to run multiple threads (lightweight subprocesses) simultaneously.

❖ Thread Creation:

(a) Extending the Thread class:

(b) Implementing Runnable interface:

❖ Thread Prioritization:

Each thread has a priority from 1 (MIN) to 10 (MAX).

3. Networking (Using java.net package)

Networking in Java allows programs to communicate over a network.

●​ java.net Package: Provides classes like Socket, ServerSocket, InetAddress, and
URL to perform networking operations.​

●​ Overview of TCP/IP and Datagram Programming:​

○​ TCP/IP (Transmission Control Protocol): Provides reliable communication (using
Socket and ServerSocket classes).​

○​ Datagram Programming: Based on UDP (User Datagram Protocol), used for
sending and receiving packets using DatagramSocket and DatagramPacket.

🌐 1. IP (Internet Protocol)

❖ What is IP?

IP (Internet Protocol) is a set of rules that govern how data is sent and received over the
Internet. It is responsible for addressing and routing packets of data from the sender to the
receiver.

❖ Key Points:

●​ Every device on the internet has a unique IP address (e.g., 192.168.1.1).
●​ IP ensures data is delivered to the correct destination.
●​ IP is a connectionless protocol: It does not guarantee delivery, order, or error

checking.
●​ Works with both TCP and UDP.​

📦 2. TCP (Transmission Control Protocol)

❖ What is TCP?

TCP is a connection-oriented protocol used for reliable communication between computers
over a network.

❖ Features:

●​ Establishes a connection before data is transferred.
●​ Ensures reliable and ordered delivery of data.
●​ Performs error-checking and retransmission if data is lost.
●​ Slower than UDP but highly reliable.​

❖ Common Uses:

●​ Web browsing (HTTP/HTTPS)
●​ File transfers (FTP)
●​ Email (SMTP)​

📡 3. UDP (User Datagram Protocol)

❖ What is UDP?

UDP is a connectionless protocol used for fast, lightweight data transmission. It doesn’t
guarantee delivery, order, or error-checking.

❖ Features:

●​ No need to establish a connection.
●​ Faster than TCP.
●​ May lose or duplicate packets.
●​ No acknowledgment mechanism.​

❖ Common Uses:

●​ Online gaming
●​ Video streaming
●​ Voice over IP (VoIP)

4. Database Connectivity (Using JDBC)

JDBC (Java Database Connectivity) is an API for connecting and executing queries with
databases.

●​ Accessing and Manipulating Databases using JDBC:​

○​ Load the JDBC driver.​

○​ Establish a connection with the database.​

○​ Execute SQL queries using Statement or PreparedStatement.​

○​ Process the results using ResultSet.​

○​ Close the connection after operations.

❖ What is JDBC?

JDBC (Java Database Connectivity) is an API for connecting Java applications to a database.

❖ Basic Steps to use JDBC:

1.Load the JDBC Driver

2.Establish Connection

Connection con =
DriverManager.getConnection("jdbc:mysql://localhost:3306/dbname", "user",
"password");

3.Create Statement and Execute Query

4.Process Results

5.Close the Connection

​

4. Applets and Event Handling

1. Java Applets

●​ Introduction to Applets:​
 Applets are small Java programs that run inside a web browser or applet viewer. They
are different from standalone Java applications and are typically used for interactive
features on web pages.​

●​ Writing Java Applets:​
 Applets are created by extending the Applet class or JApplet (for Swing-based
applets). You override methods like init(), start(), paint(), and stop().​

●​ Working with Graphics:​
 Applets use the paint(Graphics g) method to draw shapes, lines, text, etc. You can
use the Graphics class to create visual content.​

●​ Incorporating Images & Sounds:​
 Applets can display images using getImage() and play audio using AudioClip.
These add multimedia capabilities to applets.

 1. Introduction to Applets

📌 What is an Applet?

An applet is a small Java program designed to be embedded in an HTML page and run inside
a Java-enabled web browser or an applet viewer.

📌 Characteristics:

●​ No main() method​

●​ Runs within a browser using Java Plugin​

●​ Used for interactive web components (e.g., animations, forms)​

●​ Limited access to system resources due to security (sandbox model)​

 2. Writing Java Applets

📌 How to Create an Applet

To create an applet, you need to:

1.​ Import java.applet.Applet and java.awt.*​

2.​ Extend the Applet or JApplet class​

3.​ Override its lifecycle methods:​

○​ init() – for initialization​

○​ start() – when applet becomes active​

○​ paint(Graphics g) – to draw content​

○​ stop() – when the applet is inactive​

○​ destroy() – when applet is removed

Example: Simple Applet

💡 Note:

To run this, you need to place the <applet> tag in an HTML file and open it using an
applet viewer or compatible browser.

3. Working with Graphics in Applets

📌 Graphics Class

Applets use the Graphics class to draw shapes and text. This is done inside the
paint(Graphics g) method.

📌 Common Methods:

●​ drawString(String, x, y) – Draws text​

●​ drawLine(x1, y1, x2, y2) – Draws a line​

●​ drawRect(x, y, width, height) – Draws rectangle​

●​ drawOval(x, y, width, height) – Draws oval​

●​ setColor(Color c) – Sets drawing color​

●​ setFont(Font f) – Sets font for text

4. Incorporating Images & Sounds in Applets

📌 Displaying Images

Use the getImage() method to load images.

📌 Playing Sounds

Use the AudioClip interface to play sounds.

💡 Important:

●​ getDocumentBase() returns the URL of the HTML page that contains the
applet.​

●​ Images and sound files must be in the same directory or accessible via URL.

2. Event Handling Mechanisms

●​ Java follows an event-driven programming model. Events are actions like button clicks,
key presses, mouse movements, etc.

📌 What is Event Handling?

Event handling is the mechanism that controls the event and decides what should happen if an
event occurs. Java uses an event-driven programming model where user actions like:

●​ Button clicks
●​ Key presses
●​ Mouse movements​

 generate events that the program responds to

3. Listener Interfaces

●​ Java uses listeners to handle events. For each type of event, there's a corresponding
listener interface (e.g., ActionListener, MouseListener, KeyListener).

●​ You implement these interfaces and override their methods to respond to events.

Common listener interfaces:

●​ ActionListener – for button clicks
●​ MouseListener – for mouse events
●​ KeyListener – for keyboard events

4. Adapter and Inner Classes

●​ Adapter Classes:​
 Provide default implementations for listener interfaces with multiple methods. You can
extend an adapter class instead of implementing all methods.​
 Example: MouseAdapter, KeyAdapter.​

●​ Inner Classes:​
 Classes defined within another class. Useful for handling events because they can
access members of the outer class directly.

Adapter Classes

●​ Used to avoid implementing all methods of a listener interface.
●​ You can extend an adapter and override only required methods.
●​ Examples: MouseAdapter, KeyAdapter

Inner Classes

●​ A class defined within another class.
●​ Useful for event handling to access outer class variables directly.

5. GUI Design and Implementation

●​ AWT (Abstract Window Toolkit):​
 Older GUI toolkit in Java. Includes basic components like Label, Button, TextField,
Checkbox, etc.​

●​ Swing (Java Foundation Classes):​
 More advanced GUI toolkit. Components include JLabel, JButton, JTextField, etc.
Swing components are more powerful and flexible than AWT.​

●​ Layout Managers:​
 Help in arranging GUI components in containers. Examples: FlowLayout,
BorderLayout, GridLayout.​

●​ Menus:​
 Created using JMenuBar, JMenu, and JMenuItem to add menu functionality in GUI
applications.​

●​ Events and Listeners:​
 GUI components generate events (like button click), and listeners handle those events.

AWT (Abstract Window Toolkit)

●​ Older toolkit with components like Button, Label, TextField, Checkbox, etc.
●​ Example:

Swing (Java Foundation Classes)

●​ Newer and more powerful GUI toolkit.
●​ Components start with J (e.g., JButton, JLabel, JTextField)

Example: Swing Form

Layout Managers

Used to arrange GUI components:

●​ FlowLayout: Left to right, wraps around.
●​ BorderLayout: North, South, East, West, Center.
●​ GridLayout: Grid format.

Menus in Java

●​ Created using:​

○​ JMenuBar, JMenu, and JMenuItem.

6. Drawing Graphics

●​ Use the Graphics class to draw shapes like:​

○​ drawLine(), drawRect(), drawOval() for lines, rectangles, and ovals.​

○​ drawString() for text.​

●​ You can also set different fonts and colors using methods like setFont() and
setColor().

7. Overview of Servlets

●​ Servlets are Java programs that run on a server and handle requests from web clients
(like browsers).​

●​ They are used to create dynamic web pages and web applications.​

●​ Servlets are part of Java EE and work with HTTP protocol to respond to web requests.

​

	 PROGRAMMING IN JAVA
	1.Introduction to Java
	Java Architecture : –
	
	Java Features : –
	Syntax Differences between C++ and Java : –
	Semantic Differences between Java and C++ : -
	Compiling and Executing a Java Program : –
	Variables : –
	Constants : –
	Keywords: –
	Data Types : –
	
	
	Operators (Arithmetic, Logical and Bitwise) and Expressions : –
	
	
	Comments in Java : –
	Basic Java Program Structure : –
	Decision Making Constructs: –
	Loops and Nesting: –
	 Java Methods: –
	Java Scope: –
	
	
	
	
	
	 Passing and Returning Arguments: –
	 Type Conversion in Java: –
	Built in Java Class Method

	
	 2.Arrays, Strings and I/O
	1. Creating & Using Arrays
	2. Referencing Arrays Dynamically
	3. Java Strings
	4.Simple I/O Using System.out and Scanner Class
	5.Byte and Character Streams
	6.Reading/Writing from Console and Files
	Console Input/Output
	File Input/Output

	3. Inheritance, Interfaces, Packages, Enumerations, Autoboxing and Metadata
	Definition:
	 Exception Handling, Threading, Networking and Database Connectivity
	1. Exception Handling
	
	2. Multi-threading
	3. Networking (Using java.net package)
	4. Database Connectivity (Using JDBC)

	4. Applets and Event Handling
	1. Java Applets
	2. Event Handling Mechanisms
	3. Listener Interfaces
	4. Adapter and Inner Classes
	5. GUI Design and Implementation
	
	6. Drawing Graphics
	7. Overview of Servlets
	
	

